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Abstract

A single dose of progesterone reduces the cumulative time in the defensive burying test and the immobility in the forced swim test, whereas the
abrupt suppression of repeated doses increases the anxiety indicators. Whether anxiety and despair indicators reduce by a gradually decreased
schedule of progesterone is unknown. Therefore, we subjected adult ovariectomized Wistar rats to open field, defensive burying and forced swim
tests. One group received a constant schedule of progesterone (0.50 mg, daily), abruptly suppressed (AS) after five days. Another group received a
gradual reduction schedule of progesterone (GR: 0.84, 0.67, 0.50, 0.33, 0.17 mg, each day). Control group received vehicle (VEH). The GR group
displayed similar crossing in the open field test as the VEH group (F2,19=8.78, pb0.002), but also the shortest cumulative time in defensive
burying (F2,28=13.3, pb0.0001) and the shortest time in freezing (F2,24=6.39, pb0.006). In the forced swim test, the GR group displayed the
shortest immobility time (F2,19=12.1, pb0.0005), the lowest number of immobility periods (F2,19=4.26, pb0.03) and the longest latency to the
first period of immobility (F2,1=4.06, pb0.03). It is concluded that a gradually reduced schedule of progesterone reduces anxiety and despair in
the Wistar rat.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Several behavioral observations support the assumption that
progesterone exerts antidepressant-like and anxiolytic actions.
1) During the estrous cycle of the rat, the highest plasma level of
estradiol and progesterone occurs during the Proestrus–estrus
phases (Freeman, 1994; Frye et al., 2000). Precisely during these
phases the total time of immobility in the forced swim test of
Porsolt et al. (1979) is shorter as compared with the diestrus–
metaestrus phases (Contreras et al., 1998). 2) In consistence,
systemically injected progesterone reduces immobility (Martí-
nez-Mota et al., 1999). 3) From a physiological point of view, by
the 14th day of gestation, when the plasma level of progesterone
peaks, the number of reinforcers received in the low rate 72s task
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reaches its maximum (Molina et al., 2000). In addition, the
neuronal activity of the lateral septal nucleus (LSN) is related to
motivational and hedonic behavior. For instance: a) the firing
rate of the lateral septal neurons decreases during the process of
experimental despair in rats (Contreras et al., 2004); b) but
increases during the proestrus–estrus phases, showing a similar
effect as some antidepressant treatments (Contreras et al., 2000).

In regard to anxiety, the defensive burying test is widely
utilized and validated. The behavioral and physiological res-
ponses displayed in this paradigm are expressions of normal and
functionally adaptive coping patterns; the animals go from
active burying to passive freezing (De Boer and Koolhaas,
2003). The measure of the burying latency represents the rat's
reactivity and the anxiety level is represented by the cumulative
time of burying (Pinel and Treit, 1978). Along the estrous cycle,
cumulative burying decreases during Proestrus–estrus (Fernan-
dez-Guasti and Picazo, 1992), while by the 14th day of
pregnancy the cumulative time spent in burying is the shortest



Fig. 1. Burying behavior test. In the gradually reduced progesterone group (GR),
the cumulative burying (A) proved to be significantly lesser (F2,28=13.3,
pb0.0001) than the abruptly suppressed (AS) or vehicle (VEH) groups. The
lowest time of freezing (B) corresponded to GR group (F2,24=6.39, pb0.006).
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(Picazo and Fernández-Guasti, 1993), which is related with the
highest plasma level of progesterone, but not of estradiol, which
in turn peaks by the end of gestation (Tolmacheva et al., 2004).
The injection of progesterone (Picazo and Fernández-Guasti,
1995; Martínez-Mota et al., 1999, 2000; Reddy et al., 2005) or
allopregnanolone (Bitran et al., 1999; Reddy and Kulkarni,
1999; Gulinello et al., 2003; Shen et al., 2005) reduces the total
cumulative burying through actions on the GABAA receptor
since bicuculline or picrotoxin blocks these anxiolytic actions
(Reddy and Kulkarni, 1997; Laconi et al., 2001). However, these
actions are seemingly independent of the benzodiazepine
allosteric site in the GABA receptor, since the injection of
flumazenil did not modify the anxiolytic effect of progesterone
or allopregnanolone (Gulinello et al., 2002).

Some evidence supports the existence of a withdrawal
syndrome for progesterone. Indeed, the abrupt suppression of
progesterone diminishes the sedative action of lorazepam as a
result of the direct action upon the α-4 subunit of the GABAA

receptor (Moran et al., 1998), and progesterone withdrawal
diminishes the threshold for seizures induced by picrotoxin or
beta-carbolines in rats (Moran and Smith, 1998). Besides, the
withdrawal of long-term progesterone treatment decreases the
latency to burying and increases the cumulative time in burying
test (Gallo and Smith, 1993), through actions on the GABAA

receptor mediated by the main metabolite of progesterone, i.e.,
allopregnanolone (Costa et al., 1995).

These observations may be applied to the management of the
premenstrual dysphoric disorder (Smith, 2001), which can be
taken as a progesterone withdrawal syndrome (Gallo and Smith,
1993). The present study tests the hypothesis that the behavioral
effects of a gradually reduced schedule of progesterone (GR) are
less than those associatedwith an abruptly suppressed schedule of
progesterone (AS) in animal models of anxiety and depression.

2. Materials and methods

We included 67 female Wistar rats, each weighing 300 g at
the beginning of our study. All the animals lived in housing
facilities with a light–darkness cycle of 12/12 h (lights ON at
7:00 a.m.), temperature of 24 °C, and ad libitum access to water
and food. Ventral bilateral ovariectomy was practiced under
ethylic ether anesthesia. After recovery from the anesthesia and
once amikacine (Labs Zafiro S.A. de C.V., México) had been
applied to the surgical wounds, the animals were returned to
their housing facilities. At least two weeks elapsed between
surgery and treatments. The experiments were carried out in
compliance with the National Institute of Health's Guide for
Care and Use of Laboratory Animals (1996).

2.1. Groups

In our study, we distributed the animals in three groups. All
treatments were administered daily at 7:00 a.m., in a volume of
0.12 ml/rat. The rats from AS group (N=29) received a daily
(s.c.), fixed dose of progesterone during 5 consecutive days. From
AS group 22 rats underwent the burying test and 7 were forced to
swim. The GR group (N=18) was also injected daily (s.c.) with
progesterone during 5 days, but in a gradually decreased
schedule. From GR group 12 rats were submitted to the burying
defensive tests and 6 to forced swim test. The remaining group
(N=20: 13 to burying test and 7 to forced swim test) received five
injections (s.c.) of corn oil as vehicle (VEH) during five days.

2.2. Drug treatment

We selected a progesterone dose of 1.5 mg/kg, because it
reduces the immobility in the forced swim test and the
cumulative time in the defensive burying test (Martínez-Mota
et al., 1999, 2000). This dose is similar to that reported by Gallo
and Smith (1993) to produce a withdrawal syndrome. In the AS
group, we used a fixed dose of 0.5 mg/rat=1.6 mg/kg (Sigma
Chemicals Co. USA), once per day, during 5 consecutive days;
thus, each rat received a total amount of 2.5 mg. The GR group
received the same total amount of progesterone, but in a
gradually decreasing schedule, by reducing one fifth of the
initial dose each day, during five days (0.84, 0.67, 0.50, 0.33,
0.17 mg). Behavioral tests began 24 h after the last injection.

2.3. Defensive burying test

At first, each rat was placed in an individual Plexiglas cage
(27×17×15.5 cm) for 72 h before the test session. For the
defensive burying test, we used a similar Plexiglas cage. An
electrified probe (90 mm, length; 8 mm,∅) protruded from one
of the walls about 2 cm above the bed of sawdust. A stimulator
(Grass S-44) coupled in series to an isolation unit (Grass SIU5)
and a constant current unit (Grass, CCU1A) delivered direct



Fig. 2. Open field test. Crossing was significantly (F2,19=8.78, pb0.002) higher
in the AS group. (⁎pb0.05, Student–Newman–Keuls test. Abbrev. as in Fig. 1).

Fig. 3. Forced swim test. The gradual reduction of progesterone schedule (GR)
produced: (A) less immobility (F2,19=12.1, pb0.0005); (B) fewer periods of
immobility (F2,19=12.1, pb0.0005); and (C) longer latency to the first period of
immobility (F2,1=4.06, pb0.03), as compared to other groups. (⁎pb0.05,
Student–Newman–Keuls test. Abbrev. as in Fig. 1).
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current (0.3 mA) through the probe during the 10-min test.
When a rat incidentally touched the electrode, it received an
electric shock and after some time (burying latency) it began to
displace the sawdust vigorously in order to hide the electrode.
Some rats remained quiet, in an expectant attitude (freezing).
All sessions were videotaped for subsequent analysis and to
measure burying latency and total cumulative burying time, as
well as total freezing time.

2.4. Open field test

In order to discard any influence of locomotor activity on
swimming, a 5-min open field test preceded the forced swim test.
We used an acrylic box (33×44×20 cm) with the floor divided
into squares (11×11 cm) to count the number of times each rat
crossed a square completely (crossing) with its four paws.

2.5. Forced swim test

In a first 15-min habituation session, not included in the data
analysis, each rat was gently placed in a pool (40×20×60 cm)
of water (25±1 °C) at a level that just permitted the animals to
touch the bottom with their forepaws. After a period of vigorous
swimming, all rats reduced their movements to only those
necessary to maintain their head above the water level, without
any other displacement (immobility). The 5-min test session
began 24 h later. All sessions were videotaped to measure the
total time, number of periods and latency to immobility.

2.6. Statistical analysis

The data were grouped according to progesterone schedule
and analyzed by one-way ANOVA, using the post hoc Student–
Newman–Keuls test, when statistical differences reached
p≤0.05. Results are presented as mean±standard error.

3. Results

3.1. Defensive burying test

The GR group spent (F2,28=13.3, pb0.0001) the shortest
time in cumulative burying (17.6±6.76 s), significantly different
from the vehicle group (111.5±17.44 s) and the AS group
(184.8±29.03 s), which displayed the longest time. The longest
burying latency occurred in the GR group (84.3±27.24 s) with
respect to the other two groups, which displayed similar and
shorter latencies (AS: 40.3±22.96 s and vehicle: 35.2±6.9 s,
Fig. 1A), although not statistically significant.

The percentage of animals who displayed freezing was
also different among the groups. The highest percentage
occurred in the AS group (68%), followed by the vehicle
(62%), and lastly the GR group which showed the lowest
percentage of freezing animals (33%). Consistently, the GR
group displayed (F2,24=6.39, pb0.006) the shortest time in
freezing (88±11.3 s), significantly different from the vehicle
(153.5±14.9 s), and AS groups, which showed the longest
freezing time (197.2±17.1 s, see Fig. 1B).

3.2. Open field test

The crossing in the GR group (21.0±5.25) and the vehicle
group (21.0±2.6) was similar, whereas the AS group (39.3±
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3.34) showed significantly greater crossing (F2,19 =8.78,
pb0.002, see Fig. 2).

3.3. Forced swim test

The GR group displayed the shortest total time of immobility
(72.3±15.99 s), followed by the AS group (113.7±10.60 s) and
then by the vehicle group (153.1±7.53 s). These differences
among groups reached the statistical criterion of significance
(F2,19=12.1, pb0.0005). Likewise, the number of immobilities
was significantly (F2,19=4.26, pb0.03) smaller in the GR group
(23.7±0.67) than in the AS group (36.4±3.4) and in the vehicle
group (40.1±5.6). Lastly, the latency to the first period of
immobility was significantly (F2,1=4.06, pb0.03) longer in the
GR group (11.19±1.51 s) than in the AS group (6.63±1.40 s)
and in the vehicle group (6.27±1.08 s, Fig. 3).

4. Discussion

The aim of the present study was to determine whether
progesterone administered in a schedule of gradual reduction
produces different behavioral actions compared to progesterone
administration in a schedule of abrupt suppression. We found
fewer indicators of anxiety and despair with the gradual reduction
of progesterone than with the abrupt suppression schedule.

Majewska (1992) reported that the binding of progesterone
to the GABAA (Weiland and Orchinik, 1995; Follesa et al.,
2000) receptor increases the opening frequency of the chloride
channel leading to an increased neuronal hyperpolarization.
Therefore, the abrupt descent of the plasma level of progester-
one possibly associates with hyperexcitability. For instance,
barbiturates, benzodiazepines and alcohol are other GABAA

receptor ligands (Faingold et al., 2000; Reilly et al., 2000) that
produce physical dependence. A rapid descent in their plasma
level is followed by a withdrawal syndrome which is dominated
by neuronal hyperexcitability (Watson and Little, 2002; Cagetti
et al., 2003; Casasola et al., 2004). During withdrawal,
convulsive seizures are commonly observed, but in a less
extreme situation the main symptoms are anxiety and tremors.
These behavioral changes may be attenuated by a gradual
decrease in the plasma levels of addictive drugs to avoid or at
least attenuate the withdrawal syndrome (Pinna et al., 1997;
Jimenez Ruiz et al., 1999).

The presence of anxiety as a component of the progesterone
withdrawal syndrome has been demonstrated before (Gallo and
Smith, 1993; Costa et al., 1995; Gulinello et al., 2003). Our
present contribution consists in the comparison of an abruptly
suppressed schedule of progesterone with a gradual reduction
schedule. We confirmed that the abrupt suppression of
progesterone increased anxiety indicators, including freezing,
which is a passive behavior reflecting extreme anxiety (De Boer
and Koolhaas, 2003). On the contrary, the gradual reduction
schedule lowered the anxiety indicators (freezing and burying),
reaching roughly one-sixth of the values found in the vehicle-
treated group. Whereas the rats of the gradual reduction group
displayed the lowest freezing values, the abrupt suppression
group displayed the highest. These results suggest that the
schedule of gradual progesterone reduction effectively
decreases the anxiety indicators as compared with the schedule
of abrupt suppression.

A similarly encouraging conclusion arises from the forced
swim test analysis. The gradual progesterone reduction schedule
decreased the total time of immobility, and the number of
immobilities by about one-half, and increased the latency to the
first period of immobility by two-fold, as compared with the
vehicle. The anti-despair action of antidepressants includes a
decrease in the time of immobility (Consoli et al., 2005), but they
also enlarge the occurrence of the first period of immobility,
which represents the strength of the first effort to escape from the
stressful situation generated by the forced swim (Contreras et al.,
1998, 2000, 2001; Espejo and Miñano, 1999). The abrupt
suppression of progesterone also produced a lesser but significant
reduction in immobility; in agreement with the anti-despair action
exerted by a single dose of progesterone (Contreras et al., 2002)
and its antidepressive action in humans (Mortola et al., 1991).

Withdrawal from progesterone induces anxiety (Gallo and
Smith, 1993), and during the rat postpartum increases the
immobility in the forced swim test (Stoffel and Craft, 2004). A
similar change may occur in the premenstrual dysphoric
disorder in women (Cronje and Studd, 2002) since there also
occurs an abrupt decrease of plasma levels of progesterone and
allopregnanolone (Freeman et al., 2002; Smith, 2002; Uziel-
Miller and Dresner, 2002; Gulinello et al., 2003). On the
contrary, the allopregnanolone content in hippocampus and
amygdaline nuclei is higher in animals with lower anxiety and
depression indicators in open field, social interaction and forced
swim tests (Zimmerberg et al., 2005). Thus, an abrupt decrease
of plasma progesterone levels may bear some relationship with
the premenstrual syndrome in some susceptible women (Smith,
2002; Uziel-Miller and Dresner, 2002; Gulinello et al., 2003).

Certainly, progesterone is not an addictive drug, but it is
noteworthy that the cerebral pathways and neurotransmitter
systems involved in drug dependence, withdrawal and craving
seem to be different (Lingford-Hughes et al., 2003; Kreek et al.,
2005). However, progesterone may behave like many other
therapeutic drugs which produce a withdrawal syndrome, in the
absence of craving (McGrath et al., 2005). The adaptive changes
of the GABAA receptor are associated with decreased reactivity
and coupling towards its ligands, leading to the development of
tolerance (Listos and Fidecka, 2005) and probably to withdrawal
symptoms. Hence, the withdrawal syndrome to benzodiazepines
(Tsuda et al., 1998), alike the abrupt cessation of GABA cortical
infusion, is characterized by cortical hyperexcitability (Fukuda
et al., 1987; Silva-Barrat et al., 1989; Calixto et al., 1995, 2000;
Casasola et al., 2001, 2004), i.e., the opposite to normal actions.
Noticeably, flumazenil by itself is unable to promote defensive
burying changes (Saldívar-González et al., 2000), however,
flumazenil during progesterone withdrawal exerts an anxiolytic
action (Smith et al., 1998). Hence, the action of flumazenil
depends on the previous state of the receptor.

Progesterone has been assayed in different regimens for
premenstrual syndrome management with varying success
(Dennerstein et al., 1985; Rapkin et al., 1997; Johnson, 1998).
In view of our present results, we conclude that a schedule of
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gradual progesterone reduction has anxiolytic and anti-despair
effects and may be used in clinic for the management of the
premenstrual dysphoric disorder.
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